Thursday, August 23, 2012

Fermented foods : Traditional way of eating, foundation of gut flora (Part 2)

When was the last time you dine in Japanese or local Indonesian cuisine? Remember miso soup, natto as well as tempe? Yes, those are some of the local fermented foods which is part of the staple foods for traditional Japanese and Indonesians. Talking about these foods, I love it, especially tempe. 

Today, let's continue with the topic of fermentation of foods, and the types of different fermented foods which are available globally. Now, Numerous fermented foods are consumed around the world. Each nation has its own types of fermented food, representing the staple diet and the raw ingredients available in that particular place. Although the products are well know to the individual, they may not be associated with fermentation. Indeed, it is likely that the methods of producing many of the worlds fermented foods are unknown and came about by chance. Some of the more obvious fermented fruit and vegetable products are the alcoholic beverages such as beers and wines. However, several more fermented fruit and vegetable products arise from lactic acid fermentation and are extremely important in meeting the nutritional requirements of a large proportion of the worlds population. 

Which organisms are responsible for the fermentation of foods? Primarily, they consist of bacterias, mould and yeasts. Several bacterial families are present in foods, the majority of which are concerned with food spoilage. As a result, the important role of bacteria in the fermentation of foods is often overlooked. The most important bacteria in desirable food fermentations are the lactobacillaceae which have the ability to produce lactic acid from carbohydrates. 

Next, yeasts and yeast-like fungi are widely distributed in nature. They are present in orchards and vineyards, in the air, the soil and in the intestinal tract of animals. Like bacteria and moulds, yeasts can have beneficial and non-beneficial effects in foods. Yeasts are unicellular organisms that reproduce asexually by budding. In general, yeasts are larger than most bacteria. Yeasts play an important role in the food industry as they produce enzymes that favour desirable chemical reactions such as the leavening of bread and the production of alcohol and invert sugar.

How about moulds? Moulds are also important organisms in the food industry, both as spoilers and preservers of foods. Certain moulds produce undesirable toxins and contribute to the spoilage of foods. The Aspergillus species are often responsible for undesirable changes in foods. These moulds are frequently found in foods and can tolerate high concentrations of salt and sugar. However, others impart characteristic flavours to foods and others produce enzymes, such as amylase for bread making. Moulds from the genus Penicillium are associated with the ripening and flavour of cheeses. Moulds are aerobic and therefore require oxygen for growth. They also have the greatest array of enzymes, and can colonise and grow on most types of food. Moulds do not play a significant role in the desirable fermentation of fruit and vegetable products.

When microorganisms metabolise and grow they release by-products. In food fermentations the by-products play a beneficial role in preserving and changing the texture and flavour of the food substrate. For example, acetic acid is the by-product of the fermentations of some fruits. This acid not only affects the flavour of the final product, but more importantly has a preservative effect on the food. For food fermentations, micro-organisms are often classified according to these by-products. The fermentation of milk to yoghurt involves a specific group of bacteria called the lactic acid bacteria (Lactobacillus species). This is a general name attributed to those bacteria which produce lactic acid as they grow. Acidic foods are less susceptible to spoilage than neutral or alkaline foods and hence the acid helps to preserve the product. Fermentations also result in a change in texture. In the case of milk, the acid causes the precipitation of milk protein to a solid curd.

Now, let's talk abit about enzymes. What is the role of enzymes in fermentation? The changes that occur during fermentation of foods are the result of enzymic activity. Enzymes are complex proteins produced by living cells to carry out specific biochemical reactions. They are known as catalysts since their role is to initiate and control reactions, rather than being used in a reaction. Each enzyme has requirements at which it will operate most efficiently. Extremes of temperature and pH will denature the protein and destroy enzyme activity. Because they are so sensitive, enzymic reactions can easily be controlled by slight adjustments to temperature, pH or other reaction conditions. Microbial enzymes play a role in the fermentation of fruits and vegetables.

Nearly all food fermentations are the result of more than one micro-organism, either working together or in a sequence. For example, vinegar production is a joint effort between yeast and acetic acid forming bacteria. The yeast convert sugars to alcohol, which is the substrate required by the acetobacter to produce acetic acid. In general, growth will be initiated by bacteria, followed by yeasts and then moulds. There are definite reasons for this type of sequence. The smaller micro-organisms are the ones that multiply and take up nutrients from the surrounding area most rapidly. Bacteria are the smallest of micro-organisms, followed by yeasts and moulds. 

It is essential with any fermentation to ensure that only the desired bacteria, yeasts or moulds start to multiply and grow on the substrate. This has the effect of suppressing other micro-organisms which may be either pathogenic and cause food poisoning or will generally spoil the fermentation process, resulting in an end-product which is neither expected or desired. An everyday example used to illustrate this point is the differences in spoilage between pasteurised and unpasteurised milk. Unpasteurised milk will spoil naturally to produce a sour tasting product which can be used in baking to improve the texture of certain breads. Pasteurised milk, however, spoils (non-desirable fermentation) to produce an unpleasant product which has to be disposed of. The reason for this difference is that pasteurisation (despite being a very important process to destroy pathogenic micro-organisms) changes the micro-organism environment and if pasteurised milk is kept unrefrigerated for some time, undesirable micro-organisms start to grow and multiply before the desirable ones. In the case of unpasteurised milk, the non-pathogenic lactic acid bacteria start to grow and multiply at a greater rate that any pathogenic bacteria. Not only do the larger numbers of lactic acid bacteria compete more successfully for the available nutrients, but as they grow they produce lactic acid which increases the acidity of the substrate and further suppresses the bacteria which cannot tolerate an acid environment. So, for milk lovers, do take note. 

Let's now discuss abit about few factors which regards to microbial activity and growth for fermentation. First of all, water is essential for the growth and metabolism of all cells. If it is reduced or removed, cellular activity is decreased. For example, the removal of water from cells by drying or the change in state of water (from liquid to solid) affected by freezing, reduces the availability of water to cells (including microbial cells) for metabolic activity. The form in which water exists within the food is important as far as microbial activity is concerned. There are two types of water - free and bound. Bound water is present within the tissue and is vital to all the physiological processes within the cell. Free water exists in and around the tissues and can be removed from cells without seriously interfering with the vital processes. Free water is essential for the survival and activity of micro-organisms. Therefore, by removing free water, the level of microbial activity can be controlled.

Next, oxygen. Oxygen is essential to carry out metabolic activities that support all forms of life. Free atmospheric oxygen is utilised by some groups of micro-organisms, while others are able to metabolise the oxygen which is bound to other compounds such as carbohydrates. This bound oxygen is in a reduced form. Micro-organisms can be broadly classified into two groups - aerobic and anaerobic. Aerobes grow in the presence of atmospheric oxygen while anaerobes grow in the absence of atmospheric oxygen. In the middle of these two extremes are the facultative anaerobes which can adapt to the prevailing conditions and grow in either the absence or presence of atmospheric oxygen. Moulds do not grow well in anaerobic conditions, therefore they are not important in terms of food spoilage or beneficial fermentation, in conditions of low oxygen availability.

Also, temperature is another factor which is important when it comes to foods fermentation. Temperature affects the growth and activity of all living cells. At high temperatures, organisms are destroyed, while at low temperatures, their rate of activity is decreased or suspended. How about the pH level? Yes, hydrogen ions do plays a role as the pH of a substrate is a measure of the hydrogen ion concentration. A food with a pH of 4.6 or less is termed a high acid or acid food and will not permit the growth of bacterial spores. Foods with a pH above 4.6. are termed low acid and will not inhibit the growth of bacterial spores. By acidifying foods and achieving a final pH of less than 4.6, most foods are resistant to bacterial spoilage. The optimum pH for most micro-organisms is near the neutral point (pH 7.0). Certain bacteria are acid tolerant and will survive at reduced pH levels. Notable acid-tolerant bacteria include the Lactobacillus and Streptococcus species, which play a role in the fermentation of dairy and vegetable products. Moulds and yeasts are usually acid tolerant and are therefore associated with spoilage of acidic foods.

Apart from these factors, there is also something called controlled fermentation. Controlled fermentations are used to produce a range of fermented foods, including sauerkraut, pickles, olives, vinegar, dairy and other products. Controlled fermentation is a form of food preservation since it generally results in a reduction of acidity of the food, thus preventing the growth of spoilage micro-organisms. The two most common acids produced are lactic acid and acetic acid, although small amounts of other acids such as propionic, fumaric and malic acid are also formed during fermentation. Today, there are numerous examples of controlled fermentation for the preservation and processing of foods. However, only a few of these have been studied in any detail, these include sauerkraut, pickles, kimchi, beer, wine and vinegar production.

Finally, I hereby present to you a list of fermented foods from around the world. Stay tuned.

Fermented Foods: 


Acar, lemon pickle, pickle, gundruk (Indian continent)
Tempoyak, Paw Tsay, Sunki, Santol, Tempe, Kiam Chai - (South East Asia)
Szechwan cabbage, kimchi, Nozawana, Miso, Natto, Takuan - (East Asia)
Fruits vinegar, Ogili, hibiscus seeds - (Africa)
Olives, Sauerkraut, Dill pickles, Wines - (Americas)
Kushuk, Wines, Olives, Tursu - (Middle East)
Olives, Sauerkraut, Kefir, Grape Vinegar, Wines, Cheese, Yogurt- (Europe & World)




No comments:

Post a Comment